基于改进EB-YOLO-v8n的耗能梁损伤识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省自然科学基金(E2025208016,E2023208069,E2023208080); 中央引导地方科技发展资金项目(236Z5408G);河北省教育厅产学研合作专项(CXY2024045)


Damage identification of link beam based on improved EB-YOLO-v8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为对震后耗能梁段损伤状态进行准确、快速评估,在YOLO-v8n模型的基础上,加入高效多尺度注意力模块efficient multi-scale attention,EMA)和加权双向特征金字塔结构(bidirectional feaure pyramid network,BiFPN),提出了EB-YOLO-v8n耗能梁段损伤识别模型。首先,设计并完成9个不同参数的耗能拟静力试验,采用图像拍摄设备记录不同破坏程度下的结构局部损伤情况,汇总成数据集;其次,为保证数据集质量,采用Mosaic+Fliplr数据增强技术对输入数据进行增强处理,共得到2 612张图像作为数据集;再次,对数据集中的各种损伤进行标注并输入到模型中进行训练;最后,对相关创新模块进行消融实验,分析了每一个改进模块的有效性。结果表明:EB-YOLO-v8n模型的平均精度值均高于文中提到的其他模型,模型在参数量基本不变的情况下具有更强的鲁棒性;此外,根据消融实验结果可以得出,EB-YOLO-v8n模型的平均精度值分别高于E-YOLO-v8n(引入EMA)、B-YOLO-v8n(将特征金字塔网络(feature pyramid networks,FPN)中的路径聚合网络结构(path aggregation network,PAN)替换为BiFPN)1.2和3.8个百分点,并且其单张图片平均识别时间也具有一定优势。EB-YOLO-v8n模型兼顾了精度与速度之间的平衡,契合了震后损伤识别需求中高精度与快速的特点,可以满足实际工程复杂工况的需求。

    Abstract:

    To accurately and quickly evaluate the damage state of link beams after the earthquake, the EB-YOLO-v8n link beam damage identification model was proposed by adding an efficient muti-scale attention module(EMA) and a bidirectional feature pyramid network module structure(BiFPN) to the YOLO-v8n model. Firstly, quasi-static tests of 9 link beams with different parameters were designed and completed. The local damage of the structure under different damage states was recorded and summarized into a dataset. Secondly, Mosaic+Fliplr data enhancement technology was used to enhance the input data to ensure the quality, and a total of 2 612 images were obtained as the dataset. Then, the various damages in the dataset were labeled and input into the model for training. Finally, the effectiveness of each improved module was analyzed through ablation experiments. The results show that the average accuracy of the EB-YOLO-v8 model is higher than that of the other models in this paper. This means the improved model has stronger robustness with basically unchanged parameter quantities.Besides, according to the results of the ablation experiment, the average accuracy of the EB-YOLO-v8n model is 1.2% and 3.8% higher than that of E-YOLO-v8n (introducing an efficient multi-scale attention module) and B-YOLO-v8n (replacing the path aggregation network in the feature pyramid networks (FPN) with a weighted BiFPN), respectively, and it also has a certain advantage in the average recognition time per image.In general, the EB-YOLO-v8n model balances accuracy and speed, fitting the high-precision and speed requirements for post-earthquake damage recognition, which can meet the needs in complex engineering conditions.

    参考文献
    相似文献
    引证文献
引用本文

于海丰,曹 坤,苏佶智,张辉杰,方 斌,王奇智,位翠霞,岳宏亮.基于改进EB-YOLO-v8n的耗能梁损伤识别[J].河北科技大学学报,2025,46(5):542-552

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-09
  • 最后修改日期:2025-02-18
  • 录用日期:
  • 在线发布日期: 2025-11-05
  • 出版日期:
文章二维码