基于YOLO11n-SRA的带钢表面缺陷检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(52374335);中央引导地方科技发展资金项目(236Z1017G);唐山市市级科技计划项目(22130220G)


Strip steel surface defect detection based on YOLO11n-SRA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对带钢表面缺陷检测目标背景复杂、现有算法特征处理能力不足导致检测精度较低的问题,提出了一种改进的检测算法YOLO11n-SRA。首先,通过引入SHSA注意力机制替换C2PSA模块中的PSA注意力机制,以提高小目标的检测效率和精度;其次,在颈部网络中,将RCM模块嵌入C3k2模块,利用其上下文捕捉与特征增强能力,以提升多尺度检测性能;再次,通过引入ATFL损失函数,有效缓解缺陷图像中目标与背景的不平衡问题,以提高模型训练过程的稳定性;最后在NEU-DET和GC10-DET数据集上进行实验验证。结果表明,相较于YOLO11n算法,在参数量和计算量保持不变的情况下,YOLO11n-SRA的对比实验和泛化实验mAP值分别提升3.4和1.6个百分点,FPS分别提升45.8 frame/s和20.6 frame/s,召回率分别提升5.1和4.0个百分点。改进算法在检测精度和效率之间实现了良好平衡,为算法的改进和实际部署提供了参考。

    Abstract:

    To address the problem of low detection accuracy due to complex target-background interactions and insufficient feature processing capability of existing algorithms in steel surface defect detection, an improved detection algorithm YOLO11n-SRA was proposed. Firstly, the SHSA attention mechanism was introduced to replace the PSA attention mechanism in the C2PSA module in order to improve the detection efficiency and accuracy of small targets. Secondly, in the neck network, the RCM module was embedded into the C3k2 module, utilizing its context capturing and feature enhancement capabilities to improve multi-scale detection performance. Thirdly, the ATFL loss function was introduced to effectively alleviate the imbalance between the target and background in defect images in order to enhance the stability of the model training process. Finally, experimental verification was conducted on the NEU-DET and GC10-DET datasets. The contrast experiment and generalization experiment results show that compared to the YOLO11n algorithm, YOLO11n-SRA achieves a 3.4 and 1.6 increase(in percent) in mAP, respectively, 45.8 and 20.6 frame/s increase in FPS, respectively, and 5.1 and 4 increase in percent in recall rate, respectively, with no change in parameter count or computational cost.The improved algorithm strikes a good balance between detection accuracy and efficiency, which provides reference for its improvement and practical deployment.

    参考文献
    相似文献
    引证文献
引用本文

钱俊磊,黄庆尧,曾 凯,杜学强,王 雁,王杏娟.基于YOLO11n-SRA的带钢表面缺陷检测[J].河北科技大学学报,2025,46(5):521-532

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-06
  • 最后修改日期:2025-05-06
  • 录用日期:
  • 在线发布日期: 2025-11-05
  • 出版日期:
文章二维码