AR-SNN:脉冲神经网络鲁棒性研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62401623)


AR-SNN: Research on the robustness of spiking neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对脉冲神经网络(spiking neural network,SNN)受多种因素影响导致模型鲁棒性下降的问题,提出一种自适应鲁棒脉冲神经网络(adaptive robust spiking neural network,AR-SNN)模型,其包括脉冲-门控线性单元(spiking-gated linear unit,S-GLU)、自适应-前K损失(adaptive-topK loss, A-TopK Loss)、脉冲-多层感知机(spiking-multilayer perceptron,S-MLP)3个模块。首先,引入门控机制作为预处理层,通过对门控线性单元(gated linear unit, GLU)进行改进,减少线性层数量,构建S-GLU模块;其次,提出A-TopK Loss,根据累积损失的比例计算总损失中前90%损失所对应的样本的平均损失作为最终损失;再次,采用自监督学习策略,以多层感知机(multilayer perceptron,MLP)为解码层,构建S-MLP去噪网络,重建原始数据;最后,在SHD语音数据集上进行实验。结果表明:S-GLU模块增加了模型对关键信息的关注,并减少了错误分类的发生;A-TopK Loss使模型自动聚焦于损失较大的样本,提升了其在复杂数据上的学习能力;S-MLP增强了网络的特征提取能力,在噪声测试中显示出对输入扰动具有一定鲁棒性。AR-SNN模型的性能优于原始模型及其他SNN模型,能够有效提升SNN的鲁棒性。

    Abstract:

    Aiming at the problem of decreased robustness of spiking neural network (SNN) caused by multiple factors, an adaptive robust spiking neural network(AR-SNN) model was proposed. The model included three modules: spiking-gated linear units(S-GLU), adaptive-topK loss (A-TopK Loss), and spiking-multilayer perceptron (S-MLP). Firstly, the gating mechanism was introduced as the preprocessing layer. By improving the gated linear unit (GLU), the number of linear layers was reduced, and the S-GLU module was constructed. Secondly, the A-TopK Loss was proposed. The average loss of the samples corresponding to the top 90% of the total loss was calculated based on the proportion of cumulative losses as the final loss. Thirdly, a self-supervised learning strategy was adopted, with the multilayer perceptron (MLP) as the decoding layer to construct the S-MLP denoising network and reconstruct the original data. Finally, the experiment was conducted on the SHD speech dataset. The results show that the S-GLU module enhances the model[DK]’s attention to key information and reduces the occurrence of misclassification. The A-TopK Loss enables the model to automatically focus on samples with large losses, improving its learning ability on complex data. S-MLP enhances the feature extraction ability of the network and demonstrates certain robustness to input disturbances in noise tests. The performance of the AR-SNN model is superior to that of the original model and other SNN models, and it can effectively improve the robustness of SNN.

    参考文献
    相似文献
    引证文献
引用本文

张 坤,王贺慈,马金龙,马贵蕾,满梦华,张永强. AR-SNN:脉冲神经网络鲁棒性研究[J].河北科技大学学报,2025,46(5):508-520

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-16
  • 最后修改日期:2025-05-23
  • 录用日期:
  • 在线发布日期: 2025-11-05
  • 出版日期:
文章二维码