基于GA-PSO-MPC的自动驾驶汽车路径跟踪控制
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(52375105,52305265);山东省优秀青年人才基金(ZR2022YQ51);山东省自然科学基金(ZR2023ME177)


Path tracking control of self-driving vehicles based on GA-PSO-MPC
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对模型预测控制(model prediction control,MPC)算法在自动驾驶汽车路径跟踪控制中权重矩阵选取困难,导致控制精度低和控制器运行效率低的问题,提出了一种遗传粒子群模型预测控制算法(genetic particle swarm optimization model prediction control,GA-PSO-MPC)。首先,建立车辆动力学模型,根据动力学模型确定目标函数并加入约束条件设计MPC控制器;其次,利用遗传粒子群算法(genetic particle swarm optimization,GA-PSO)对模型预测控制器的权重矩阵进行优化;最后,搭建Carsim/Simulink仿真平台,将GA-PSO-MPC控制器与传统MPC控制器的跟踪性能进行对比,完成不同车速、不同工况下的路径跟踪控制仿真。结果表明,经过GA-PSO算法优化权重矩阵后的控制器,收敛速度提高了68.85%,最大横向误差降低了63.9%。在各种车速下,GA-PSO-MPC控制器的运行效率与跟踪精度均优于传统MPC控制器,可以有效解决传统模型预测控制器运行效率低、跟踪精度不足的问题。

    Abstract:

    Aiming at the difficulty in selecting the weight matrix of model predictive control (MPC) algorithm in the path tracking control of self-driving vehicles, which leads to low control accuracy and low operating efficiency of the controller, a genetic particle swarm optimization model prediction control (GA-PSO-MPC) algorithm was proposed. Firstly, a vehicle dynamics model was established, the objective function was determined according to the dynamics model and constraints were added to design the MPC controller; Secondly, the genetic particle swarm optimization algorithm (GA-PSO) was used to optimize the weight matrix of the model predictive controller; Finally, a Carsim/Simulink simulation platform was built to compare the tracking performance of GA-PSO-MPC controller with traditional MPC controller, and the simulation of path tracking control under different working conditions with different speeds was completed. The results show that the convergence speed of the controller proposed in this paper after the optimization of the weight matrix by GA-PSO algorithm is improved by 68.85%, and the maximum lateral error is reduced by 63.9%. The operation efficiency and tracking accuracy of the GA-PSO-MPC controller are better than that of the traditional MPC controller at various vehicle speeds, which can effectively solve the problems of low operation efficiency and insufficient tracking accuracy of the traditional model predictive controller.

    参考文献
    相似文献
    引证文献
引用本文

王子喆,李 波,葛文庆,陆佳瑜,王凯毅.基于GA-PSO-MPC的自动驾驶汽车路径跟踪控制[J].河北科技大学学报,2025,46(5):498-507

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-11
  • 最后修改日期:2025-07-15
  • 录用日期:
  • 在线发布日期: 2025-11-05
  • 出版日期:
文章二维码