融合知识图谱的多行为职位推荐
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Multi-behavioral job recommendation integrating knowledge graph
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高职位推荐准确率,基于求职者和招聘者在“浏览岗位→投递简历→招聘者反馈”等环节表现出的行为隐含的求聘双方偏好信息,提出了一种融合知识图谱的多行为职位推荐模型(multi-behavior job recommendation integrating knowledge graph,MB-JRIKG)。该方法基于真实的职位数据构建求职领域知识图谱,并在偏好传播理论的基础上提出多行为偏好传播策略,将求聘各环节中“招聘者认可”设为目标行为,求职者浏览岗位和投递简历设定为辅助行为,综合预测求职者的偏好。首先,分别以用户在不同行为下的历史记录作为用户感兴趣的种子集,并在知识图谱中沿着节点之间的关系进行偏好传播以推理出用户的潜在偏好,增强用户表示;然后,将用户表示向量和职位表示向量输入预测函数中,计算用户在每个行为类型下的交互概率,并加权求和作为目标行为的交互概率;最后,使用阿里巴巴人岗智能匹配的比赛数据集进行点击率预测实验。结果表明,在与MF、XGBoost、KGCN、RippleNet 4个基准模型的对比中,MB-JRIKG相比次优基准模型RippleNet在指标AUC和ACC上分别提高了0.014 5和0.028 8,验证了模型的有效性,实现了数据的充分利用。该模型有效结合求聘双方的交互行为进行推荐,引入职位知识图谱的属性关联,对实现个性化的职位推荐有参考价值。

    Abstract:

    To improve the accuracy of job recommendations,a multi-behavioral job recommendation integrating knowledge graph (MB-JRIKG) was proposed based on the implicit preference information of both job seekers and recruiters in the process of [DK]"browsing job positions → submitting resumes → receiving feedback from recruiters". This method constructed a knowledge graph of job seeking based on real job data,and proposed a multi behavior preference propagation strategy based on preference propagation theory. [DK]"Recruiter recognition" in each stage of job seeking was set as the target behavior,and the auxiliary behaviors of job seekers browsing job positions and submitting resumes were set to comprehensively predict job seekers′ preferences. Firstly,the user′s historical records under different behaviors were used as user-interested seed sets,and preference propagation was carried out along the relationships between nodes in the knowledge graph to infer the user′s potential preferences and enhance user representation; Then,the user representation vector and position representation vector were input into the prediction function to calculate the interaction probability of the user under each behavior type,and the weighted sum was used as the interaction probability of the target behavior. Finally,the click-through rate prediction experiment was conducted using the competition dataset of Alibaba′s human job intelligent matching. The results show that compared with the four benchmark models (MF,XGBoost,KGCN and RippleNet),MB-JRIKG achieves a 0014 5 improvement in AUC and a 0028 8 improvement in ACC over the sub optimal benchmark model RippleNet,verifying the effectiveness of the model and achieving full utilization of data. This model effectively combines the interactive behavior of both parties seeking employment for recommendation,introduces attribute association of job knowledge graph,and has reference value for achieving personalized job recommendation.

    参考文献
    相似文献
    引证文献
引用本文

刘 滨,雷晓雨,刘格格,詹世源,高 歆,杨晓艳.融合知识图谱的多行为职位推荐[J].河北科技大学学报,2025,46(3):333-341

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-26
  • 最后修改日期:2025-01-18
  • 录用日期:
  • 在线发布日期: 2025-07-02
  • 出版日期:
文章二维码