基于PSO-BP神经网络高速公路建设期碳排放预测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Carbon emission prediction method for expressway construction period based on PSO-BP neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设层、能源消耗层与材料消耗层4个维度凝练出路线长度、路基长度、路面长度、隧道长度、桥涵长度、互通区长度、挖方量、填方量、柴油消耗量、水泥消耗量、碎石消耗量和钢筋消耗量12个关键指标;获取36个高速公路项目数据作为模型训练的实证样本,结合误差指标进行对比分析。结果表明,所得PSO-BP模型R2为0.974,BP模型R2为0.890,前者更接近于1;与生命周期法结果相比较,PSO-BP比未优化的BP与真实值之间偏差更小。划分的4个维度层和选择的12个关键指标使得在高速公路设计规划阶段即可预测得到建设期的碳排放,为高速公路的低碳建设提供了参考。

    Abstract:

    To solve the problem of inaccurate carbon emissions prediction during the highway construction period, a method of optimizing the back propagation(BP) neural network by particle swarm optimization (PSO) algorithm was proposed to predict carbon emissions. The 12 key indicators, including route length, subgrade length, pavement length, tunnel length, bridge and culvert length, interchange length, excavation volume, filling volume, diesel consumption, cement consumption, crushed stone consumption and steel consumption, were refined from the four dimensions of project length, construction, energy consumption and material consumption using the analytic hierarchy process (AHP). The data from 36 highway projects were used as empirical samples for model training, and a comparative analysis was conducted based on error indicators. The results show that the R2 value of the obtained PSO-BP model is 0974, while the R2 value of the BP model is 0890, with the former being closer to 1. Compared to the results of life cycle assessment, the PSO-BP model has a smaller deviation from the actual value than the unoptimized BP model. The four layers of the hierarchy and the selected 12 key indicators enable the prediction of carbon emissions during the design and planning stage of highway construction, providing reference for low-carbon highway construction.

    参考文献
    相似文献
    引证文献
引用本文

赵全胜,李 斐,郭风爱,于建游,徐士钊,胡运朋,褚晓萌.基于PSO-BP神经网络高速公路建设期碳排放预测方法[J].河北科技大学学报,2025,46(3):312-321

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-30
  • 最后修改日期:2024-11-15
  • 录用日期:
  • 在线发布日期: 2025-07-02
  • 出版日期:
文章二维码