融合多种机制的交通时序数据异常检测模型研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on anomaly detection model for traffic time series data integrating multiple mechanisms
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提升交通时序数据异常识别能力,构建了一种混合模型。第一,融合多头注意力、残差及概率稀疏自注意力机制,形成全局特征识别(global feature recognition,GFR)模块,增强模型对全局特征的识别能力,有效降低计算复杂度 ;第二,将膨胀卷积与多尺度卷积相结合,形成局部特征识别(local feature recognition,LFR)模块,进一步优化模型局部特征的提取能力;第三,引入Free- Running训练策略,提升模型的鲁棒性;第四,将上述特征识别模块和训练策略与LSTM相结合,并将自注意力机制的结果替代LSTM的输入门控,以优化长序列的记忆效果,同时进一步降低计算复杂度;最后,采用多元高斯分布概率函数对异常进行判别。结果表明,每在LSTM基础上增加1个模块,所提模型的预测和异常检测能力均有提升;与常见的Transformer-Bi-LSTM混合模型相比,所提模型在预测能力上更为出色,且计算复杂度更低。所提模型在交通时序数据的全局和局部异常识别上高效、可靠,为提升交通系统的运行效率和安全性提供了参考。

    Abstract:

    To enhance the anomaly recognition ability of traffic time series data, a hybrid model was constructed. Firstly, the multi-head attention, residuals and probabilistic sparse self-attention were combined to form a global feature recognition (GFR) module, enhancing the ability while reducing computational complexity. Secondly, the dilated convolution and multi-scale convolution were combined to form a local feature recognition (LFR) module, further optimizing local feature extraction. Thirdly, the FreeRunning training strategy was used to improve model robustness. Fourthly, the modules and training strategy were combined with LSTM, while the result of the self-attention mechanism replaced the LSTM input gate, so as to optimize long sequence memory ability and reduce computing complexity. Finally, a multivariate Gaussian distribution probability function was used to discriminate anomalies. The results show that adding each module on the basis of LSTM significantly improves the model's prediction and anomaly detection ability; Compared with the general hybrid model Transformer-Bi-LSTM, the proposed model has stronger prediction ability and lower computational complexity. The proposed model performs effectively in recognizing both global and local anomalies in traffic time series data, which provides reference for improving the operational efficiency and safety of the traffic system.

    参考文献
    相似文献
    引证文献
引用本文

张培培,刘佳奇.融合多种机制的交通时序数据异常检测模型研究[J].河北科技大学学报,2025,46(3):257-267

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-19
  • 最后修改日期:2025-03-10
  • 录用日期:
  • 在线发布日期: 2025-07-02
  • 出版日期:
文章二维码