基于信息熵的自适应多分类器交通数据插值模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Adaptive multi classifier traffic data interpolation model based on information entropy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决单一交通数据缺失值插补模型不能全面地考虑交通数据多源异构、数据量复杂等问题,提出一种基于信息熵来确定自适应权重的多分类器插值模型。首先,选择表示“混乱度”的信息熵来衡量预测结果的优劣进而确定多分类器的权重;其次,设计动态的自适应权重设定方法来解决设备差异性引起的不同样本适应的分类器不同的问题;最后,在公共数据集与自采数据集上进行验证。结果表明:所提模型相较于其他插值模型在检测效果上取得了显著的提升,并且在公开数据集“州际公路交通流量数据集”上进行的实验也取得了较高精度,F1达到0.778,RMSE提升10%,具有较强的泛化性。在使用信息熵确定权重模型的基础上,使权重跟随数据流自适应变化,具有较快的检测速度和更高的准确度,为交通数据清洗中缺失值填补模型的建立提供了技术参考。

    Abstract:

    To address the issue that single traffic data missing value imputation models cannot comprehensively handle the multi-source heterogeneity and complex data volume of traffic data,a multi-classifier imputation model based on adaptive weighting determined by information entropy was proposed. First,information entropy representing "disorder degree" was introduced to evaluate prediction quality and determine multi-classifier weights. Second,a dynamic adaptive weighting method was designed to resolve the problem of different classifiers being suitable for various samples caused by device heterogeneity. Finally,validation was conducted on both public and self-collected datasets. The results demonstrate that the proposed model achieves significant improvement in detection performance compared with other imputation models. It also attains high accuracy in experiments on the public Interstate Highway Traffic Flow Dataset,with an F1 of 0778 and a 10% improvement in RMSE, exhibiting strong generalizability. By enabling weights to adaptively evolve with data streams based on information entropy determination,the algorithm achieves faster detection speed and higher accuracy,providing technical references for the establishment of missing value imputation models in traffic data cleaning.

    参考文献
    相似文献
    引证文献
引用本文

张运凯,高 金,李 青,王 旭.基于信息熵的自适应多分类器交通数据插值模型[J].河北科技大学学报,2025,46(3):248-256

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-17
  • 最后修改日期:2025-04-15
  • 录用日期:
  • 在线发布日期: 2025-07-02
  • 出版日期:
文章二维码