基于改进PPO算法的混合动力汽车能量管理策略
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Energy management strategy for hybrid electric vehicle based on improved PPO algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高功率分流式混合动力汽车(hybrid electric vehicle,HEV)的经济性,建立了HEV整车的纵向动力学模型,并提出了一种基于策略熵优化的改进近端策略优化(proximal policy optimization,PPO)算法的能量管理策略(energy management strategy,EMS)。在一般PPO算法基础上,通过采用经验池机制简化算法框架,只使用1个深度神经网络进行交互训练和更新,以减少策略网络参数同步的复杂性;为了有效探索环境并学习更高效的策略,在损失函数中增加策略熵,以促进智能体在 探索与利用之间达到平衡,避免策略过早收敛至局部最优解。结果表明,这种基于单策略网络改进PPO算法的EMS相比于基于双策略网络PPO的EMS,在UDDS工况和NEDC工况下,均能更好地维持电池的荷电状态(state of charge,SOC),同时等效燃油消耗分别降低了8.5%和1.4%,并取得了与基于动态规划(dynamic programming,DP)算法的EMS相近的节能效果。所提改进PPO算法能有效提高HEV的燃油经济性,可为HEV的EMS设计与开发提供参考。

    Abstract:

    In order to improve the economy of power-split hybrid electric vehicle (HEV),a longitudinal dynamics model of the entire HEV vehicle was established,and an energy management strategy (EMS) based on strategy entropy optimization with an improved proximal policy optimization (PPO) algorithm was proposed. The algorithmic framework was simplified by employing an experience pooling mechanism based on traditional PPO algorithm,and only one deep neural network was used for interactive training and updating to reduce the complexity of parameter synchronization in the policy network. In order to effectively explore the environment and learn more efficient strategies,the strategy entropy was added to the loss function to promote the intelligence to strike a balance between exploration and utilization and to avoid premature convergence of strategies to local optimal solutions. The results show that the EMS based on the improved PPO algorithm with single-policy network maintains the state of charge(SOC) of the battery more effectively than the EMS based on the dual-strategy network PPO under both UDDS and NEDC driving cycle. Additionally,the equivalent fuel consumption is reduced by 85% and 14%,respectively,achieving energy-saving effects comparable to the EMS based on the dynamic programming(DP) algorithm.The proposed improved PPO algorithm can effectively enhance the fuel economy of hybrid vehicles and provide a reference for the design and development of EMS for hybrid vehicles.

    参考文献
    相似文献
    引证文献
引用本文

马 超,孙 统,曹 磊,杨 坤,胡文静.基于改进PPO算法的混合动力汽车能量管理策略[J].河北科技大学学报,2025,46(3):237-247

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-06
  • 最后修改日期:2024-09-01
  • 录用日期:
  • 在线发布日期: 2025-07-02
  • 出版日期:
文章二维码