一种带有注意力机制的大基线场景端到端单应性估计方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62133002)


An end-to-end homography estimation method for large baseline scenes with an attention mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前现有单应性估计方法存在的精度不高、对大基线场景与运动模糊场景适应性不强的问题,构建了一种带有注意力机制的大基线场景端到端单应性估计方法,采用无监督学习的方式进行单应性估计。首先,引入SE通道注意力模块,构建带有注意力机制的单应性回归网络层,获得网络对于图像各通道间关联性的学习;其次,构建基于掩膜与感知损失度量的二元无监督损失方式,提高网络感知域范围以及网络对于大基线场景的适应性;最后,构建Homo-COCO合成数据集,采用数据增强使得网络模型对于光照变化与运动模糊具有一定的鲁棒性,获得更强的真实场景泛化能力。经过充分的对比及消融实验表明,该方法在精度指标与场景适应性方面优于现有方法,具有良好的准确性与适应性。本方法可以有效估计图像单应性,为图像拼接、图像校正等计算机视觉后续任务提供准确参数估计。

    Abstract:

    Aiming at the problems of low accuracy and limited adaptability to large baseline scenes and motion blur scenarios in current homography estimation methods, an end-to-end homography estimation methodwith attention mechanism for large baseline scenes was constructed, which utilized unsupervised learning for homography estimation. Firstly, by introducing the SE channel attention module, a homography regression network layer with attention mechanism was constructed, enabling the network to learn the inter-channel correlations of images. Secondly, a binary unsupervised loss construction method based on mask and perceptual loss metrics was proposed to enhance the network′s perception range and adaptability to large baseline scenes. Finally, a Homo-COCO synthetic dataset was created, and data augmentation was used to improve the network model′s robustness to changes in lighting and motion blur, resulting in stronger generalization capabilities in real-world scenes. Extensive comparative and ablation experiments demonstrate that this method outperforms existing methods in terms of accuracy and scene adaptability, showing good precision and adaptability. It can effectively estimate image homography and provide accurate parameter estimation for subsequent computer vision tasks such as image stitching and image correction.

    参考文献
    相似文献
    引证文献
引用本文

林佐江,曹 旭,陈 玮,白 宇,米 博,张学伟,方 浩.一种带有注意力机制的大基线场景端到端单应性估计方法[J].河北科技大学学报,2024,45(6):669-682

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-05
  • 最后修改日期:2024-10-21
  • 录用日期:
  • 在线发布日期: 2025-01-02
  • 出版日期:
文章二维码