联合实体边界检测的命名实体识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Named entity recognition method based on joint entity boundary detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统命名实体识别方法无法有效利用实体边界信息的问题,提出一种联合实体边界检测的命名实体识别方法,即将实体边界检测作为辅助任务,增强模型对实体边界的判断能力,进而提升模型对实体的识别效果。首先,利用Bert预训练语言模型对原始文本进行特征嵌入获取词向量,并引入自注意力机制增强词对上下文信息的利用;其次,在命名实体识别任务的基础上,添加实体边界检测辅助任务,增强模型对实体边界的识别能力;再次,对比联合实体边界检测的命名实体识别方法与基线方法的有效性,并对测试结果进行消融实验;最后,进行样例分析,分析损失权重β对实体边界检测的影响。实验结果表明,在英文社交媒体数据集Twitter-2015上,联合实体边界检测的命名实体识别方法相较于基线模型取得了更高的精准率、召回率和F1值,其中F1值达到了73.57%;并且,边界检测辅助任务提升了基线方法的检测效果。所提方法能有效利用实体边界信息,从而获得更好的实体识别效果,促进了人机交互系统的发展,对自然语言处理下游任务有重要意义。

    Abstract:

    To solve the problem that traditional named entity recognition methods cannot effectively utilize entity boundary information, a named entity recognition method based on joint entity boundary detection was proposed. The method took entity boundary detection as an auxiliary task, so that the model can enhance the ability of entity boundary recognition, and then improve the effect of entity recognition. Firstly, the Bert pretraining language model was used to embed the features of the original text to obtain word vectors, and the self-attention mechanism was introduced to enrich the context features of words. Secondly, on the basis of named entity recognition task, an auxiliary entity boundary detection task was added to enhance the recognition ability of the model to the entity boundaries. Thirdly, the effectiveness of the named entity recognition method and the baseline method was compared, and the test results were from ablation experiments. Finally, the influence of loss weight β on entity boundary detection was analyzed by examples. The experimental results show that on the English social media dataset Twitter-2015, the named entity recognition method combined with entity boundary detection achieves higher accuracy, recall rate and F1 value than the baseline model, of which the F1 value can reach 7357%. In addition, the boundary detection auxiliary task has a certain improvement effect on the baseline method. The proposed method can effectively utilize entity boundary information to obtain better entity recognition effect, and promote the development of human-computer interaction system, which is of great significance for downstream tasks of natural language processing.

    参考文献
    相似文献
    引证文献
引用本文

李晓腾,勾智楠,高 凯.联合实体边界检测的命名实体识别方法[J].河北科技大学学报,2023,44(1):20-28

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-02-21
  • 最后修改日期:2022-12-25
  • 录用日期:
  • 在线发布日期: 2023-03-03
  • 出版日期:
文章二维码