摘要:为了丰富Sturm-Liouville(S-L)微分算子的谱理论,研究了闭区间[0,1]上边界条件依赖谱参数的非连续S-L问题。首先利用该问题在直和空间上的等价刻画,给出了非连续S-L问题特征值与连续S-L问题特征值间的交替关系,即在非连续S-L问题的特征值的每个开子区间内都恰有连续S-L问题的一个特征值,进而由连续S-L问题的振荡理论推出非连续S-L问题的振荡理论。然后通过Prüfer变换和Hergloz函数的转换,建立了边界条件依赖谱参数的非连续S-L问题与边界条件为常值的非连续S-L问题的转换,得出转换后的特征值与转换前(除去有限个)的特征值相等。最后通过构造边界条件为常值的非连续S-L问题的特征函数求得其特征值的渐近式,从而得到了边界条件依赖谱参数的非连续S-L问题的特征值的渐近表达式。新的研究方法可推广到对间断点条件依赖谱参数的S-L问题研究。