Abstract:Inertial guidance system plays a very important role in guided artillery. Micro electro mechanical system (MEMS) gyroscope, as the core component of inertial guidance system, has high resistance to overload and restricts the application of inertial guidance system in high overload environment directly. First of all, the high overload environment in the gun chamber is modeled and quantified, and the mechanism of high overload failure of the MEMS gyro structure is summarized. Secondly, based on the previous public research results from different institutes at home and abroad, the anti-high overload MEMS gyroscopes with different monitoring methods, different structural forms, different structural materials and different working principles are introduced from the perspective of anti-overload characteristics of MEMS gyroscopes impact resistance. Finally, the related reports and papers are summarized, and it is pointed out that the anti-high overload MEMS gyroscope should be designed from the aspects of drive-detection mode, reasonable structure of energy-absorbing and energy-dissipating structure, working principle, new structural material and multi-level system buffer methods to improve the anti-high overload ablility.