一类三维系统的分支分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(11401541); 山西省自然科学基金(2015011009)


Bifurcation analysis of a three dimensional system
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了丰富三维混沌系统的定性与分支理论,以具有三重零奇异平衡点的二次截断规范型系统为研究对象,研究了此系统在不同参数条件下的平衡点的存在性及其附近的稳定性与分支问题。使用数学分析的方法讨论了在不同参数条件下,平衡点所对应的特征方程实根的存在性,从而得到平衡点处丰富的局部流形情况,引出系统可能会产生的分支情形。利用卡尔丹诺公式仔细分析了平衡点为鞍焦点的参数条件,分析了产生一维Hopf分支的参数条件,通过计算得到超临界Hopf分支与亚临界Hopf分支的前提条件,结果表明系统具有丰富的稳定性与分支情况,可为以后证明产生连接鞍焦点的同宿环或异宿环的存在性和产生Silnikov型混沌证明提供理论前提。研究方法可推广到对其他高维非线性系统的研究。

    Abstract:

    In order to enrich the stability and bifurcation theory of the three dimensional chaotic systems, taking a quadratic truncate unfolding system with the triple singularity equilibrium as the research subject, the existence of the equilibrium, the stability and the bifurcation of the system near the equilibrium under different parametric conditions are studied. Using the method of mathematical analysis, the existence of the real roots of the corresponding characteristic equation under the different parametric conditions is analyzed, and the local manifolds of the equilibrium are gotten, then the possible bifurcations are guessed. The parametric conditions under which the equilibrium is saddle-focus are analyzed carefully by the Cardan formula. Moreover, the conditions of codimension-one Hopf bifucation and the prerequisites of the supercritical and subcritical Hopf bifurcation are found by computation. The results show that the system has abundant stability and bifurcation, and can also supply theorical support for the proof of the existence of the homoclinic or heteroclinic loop connecting saddle-focus and the Silnikov's chaos. This method can be extended to study the other higher nonlinear systems.

    参考文献
    相似文献
    引证文献
引用本文

王永文,乔志琴,薛亚奎.一类三维系统的分支分析[J].河北科技大学学报,2018,39(2):135-141

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-12-25
  • 最后修改日期:2018-03-03
  • 录用日期:
  • 在线发布日期: 2018-04-17
  • 出版日期:
文章二维码