改进的PSO-RBF神经网络在联合制碱中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省自然科学基金(F2014208145)


Application of improved PSO-RBF neural network in the synthetic ammonia decarbonization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    联合制碱过程是一类典型的复杂工业过程,具有时变、非线性、不确定性等特征,在线控制模型难以建立。针对联合制碱复杂工业过程控制精度不高、鲁棒性差等问题,提出一种改进的PSO-RBF神经网络控制算法。将粒子群优化算法和径向基神经网络相结合,使用改良的粒子群优化算法对RBF神经网络的隐含层基函数中心、宽度和输出层的连接权值进行寻优,建立基于改进的PSO算法优化后的RBF神经网络模型。将改进的PSO-RBF神经网络控制模型应用到联合制碱的关键工序碳化过程中,并与先前应用的模糊神经网络控制模型进行比较,经仿真研究验证表明,在联合制碱碳化过程中应用改进的PSO-RBF神经网络控制算法,其控制精度和系统鲁棒性得到了有效的提高,为解决一类复杂工业过程的建模与优化控制方法研究提供了有效的技术途径。

    Abstract:

    The synthetic ammonia decarbonization is a typical complex industrial process, which has the characteristics of time variation, nonlinearity and uncertainty, and the on-line control model is difficult to be established. An improved PSO-RBF neural network control algorithm is proposed to solve the problems of low precision and poor robustness in the complex process of the synthetic ammonia decarbonization. The particle swarm optimization algorithm and RBF neural network are combined. The improved particle swarm algorithm is used to optimize the RBF neural network's hidden layer primary function center, width and the output layer's connection value to construct the RBF neural network model optimized by the improved PSO algorithm. The improved PSO-RBF neural network control model is applied to the key carbonization process and compared with the traditional fuzzy neural network. The simulation results show that the improved PSO-RBF neural network control method used in the synthetic ammonia decarbonization process has higher control accuracy and system robustness, which provides an effective way to solve the modeling and optimization control of a complex industrial process.

    参考文献
    相似文献
    引证文献
引用本文

李永伟,李钰曼,王红飞,李丽铭.改进的PSO-RBF神经网络在联合制碱中的应用[J].河北科技大学学报,2017,38(6):578-584

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-09-30
  • 最后修改日期:2017-11-06
  • 录用日期:
  • 在线发布日期: 2017-12-14
  • 出版日期:
文章二维码