带有局部干扰的Euler-Bernoulli梁方程的稳定性分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61174080)


Stabilization analysis of Euler-Bernoulli beam equation with locally distributed disturbance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了丰富控制理论中关于系统稳定性问题的理论,以Euler-Bernoulli梁方程为研究对象,研究了带有局部干扰的Euler-Bernoulli梁方程的稳定性问题。设计了一个基于输出的反馈控制器用于抑制干扰产生的影响,采用极大单调算子理论证明非线性闭环系统的适定性,即证明闭环系统的解的存在性与唯一性。设立适当的状态空间,定义适当的内积,进一步定义了符合此状态空间的非线性算子,将系统转化为抽象发展方程的形式,在此基础上,证明了闭环系统的解的存在性与唯一性。通过构造合适的Lyapunov函数,对闭环系统的稳定性问题进行研究,证明了闭环系统的渐近稳定性。结果表明,设计出合适的抗干扰控制器是研究系统稳定性的基础,研究带有局部干扰的Euler-Bernoulli梁方程的稳定性能够证明系统是具有渐进稳定性的,此方法可以推广到对诸如波方程、Timoshenko梁方程、薛定谔方程等系统的研究。

    Abstract:

    In order to enrich the system stability theory of the control theories, taking Euler-Bernoulli beam equation as the research subject, the stability of Euler-Bernoulli beam equation with locally distributed disturbance is studied. A feedback controller based on output is designed to reduce the effects of the disturbances. The well-posedness of the nonlinear closed-loop system is investigated by the theory of maximal monotone operator, namely the existence and uniqueness of solutions for the closed-loop system. An appropriate state space is established, an appropriate inner product is defined, and a non-linear operator satisfying this state space is defined. Then, the system is transformed into the form of evolution equation. Based on this, the existence and uniqueness of solutions for the closed-loop system are proved. The asymptotic stability of the system is studied by constructing an appropriate Lyapunov function, which proves the asymptotic stability of the closed-loop system. The result shows that designing proper anti-interference controller is the foundation of investigating the system stability, and the research of the stability of Euler-bernoulli beam equation with locally distributed disturbance can prove the asymptotic stability of the system. This method can be extended to study the other equations such as wave equation, Timoshenko beam equation, Schrodinger equation, etc.

    参考文献
    相似文献
    引证文献
引用本文

韩鹏程,刘丹红.带有局部干扰的Euler-Bernoulli梁方程的稳定性分析[J].河北科技大学学报,2017,38(6):536-541

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-03-24
  • 最后修改日期:2017-09-28
  • 录用日期:
  • 在线发布日期: 2017-12-14
  • 出版日期:
文章二维码