Effect of carbon-chain length and hydroxyl number on lubrication performance of alcohols
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to explore the lubrication performance of alcohols under high loads and high speeds conditions, especially the relationship between carbon-chain length and hydroxyl number and lubrication performance, the effects of carbon-chain length and hydroxyl number on the lubrication performance were well studied. The tribological properties of a series of alcohols were investigated by a four-ball tribological machine, and the effects of the carbon-chain length and the hydroxyl number on their lubricating properties were investigated by means of viscometer, transmission electron microscopy (TEM) and Raman. Experiments show that with the increasing of the carbon-chain length, the run-in period and the time for achieving stable friction coefficient were shorted, and the wear was reduced; with the increasing of the hydroxyl number, the wear decreased with no obvious run-in period and consistent fluctuation of friction coefficient for ethylene glycol and continuous decrease of friction coefficient for glycerol. It is found that friction-induced graphene is superior to amorphous carbon in effectively promoting the tribosystem to achieve the stable friction coefficient and shorten run-in period, which provides reference for the application of alcohols in the field of mechanical equipment.

    Reference
    Related
    Cited by
Get Citation

CHEN Qi, ZHANG Renhui, HE Zhongyi, XIONG Liping. Effect of carbon-chain length and hydroxyl number on lubrication performance of alcohols[J]. Journal of Hebei University of Science and Technology,2021,42(1):1-7

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 21,2020
  • Revised:November 23,2020
  • Adopted:
  • Online: December 18,2020
  • Published:
Article QR Code