今天是

  • 学校首页
  • 期刊社首页
  • 本刊首页
  • 本刊概况
    • 刊物介绍
    • 人员组成
  • 编委会
    • 编委会成员
    • 编委会章程
  • 征订与广告
    • 期刊征订
    • 广告服务
  • 联系我们
    • 编辑部成员
    • 编辑部地址
  • Email Alert
  • Rss订阅
  • 资料下载
  • English
文章摘要
尹雅楠,甄 然,武晓晶,张春悦,吴学礼.自适应多启发蚁群算法的无人机路径规划[J].河北科技大学学报,2021,42(1):38-47
自适应多启发蚁群算法的无人机路径规划
Research on UAV route planning based on adaptive multi heuristic ant colony algorithm
投稿时间:2020-09-06  修订日期:2020-11-06
DOI:10.7535/hbkd.2021yx01006
中文关键词: 航空、航天科学技术基础学科其他学科  无人机  蚁群算法  路径规划  启发因素
英文关键词: basic science and technology of aeronautics and astronautics other disciplines  UAV  ant colony algorithm  route planning  heuristic factors
基金项目:国防基础计划项目; 河北省重点研发计划项目(19250801D); 河北省研究生创新资助项目(CXZZSS2020098); 河北省军民融合发展研究课题(HB19JMRH009)
作者单位E-mail
尹雅楠 河北科技大学电气工程学院  
甄 然 河北科技大学电气工程学院  
武晓晶 河北科技大学电气工程学院  
张春悦 河北科技大学电气工程学院  
吴学礼 河北科技大学电气工程学院;河北省生产过程自动化工程技术研究中心 xlwu0311@163.com 
摘要点击次数: 3824
全文下载次数: 3753
中文摘要:
      为了解决蚁群算法在无人机实现路径规划中容易陷入局部最优的问题,提出改进的蚁群算法。对信息素的挥发因子以及信息素进行上、下限设置,防止由于较短路径上的信息素过高以及较长路径上的信息素过低,使蚂蚁陷入局部最优,同时在多启发因素的影响下,将路径的整体长度作为决定状态转移概率的一个自适应启发函数因子,当路径长度很大时,自适应启发函数因子较小,使得蚁群选择该路径的概率减小。实验结果表明,改进的算法在路径长度上减少了6.4%,最优路径长度方差降低了85.78%,增加了对环境整体性的考虑,缩短了路径长度,降低了迭代次数,跳出局部最优。在环境复杂度加大的情况下,引入自适应启发函数因子之后的算法可以有效地选择较好的路径,为无人机路径规划提供了理论依据。
英文摘要:
      In order to solve the problem that ant colony algorithm is easy to fall into local optimum in UAV route planning, an improved ant colony algorithm was proposed. The upper and lower limits of pheromone volatilization factor and pheromone were set to prevent ants from falling into local optimum because pheromone on short path was too high or pheromone on long path was too low. At the same time, under the influence of multiple heuristic factors, the overall length of the path was taken as an adaptive heuristic function factor to determine the state transition probability. When the path length was large, the adaptive heuristic function factor was small, which reduced the probability of choosing the path by the ant colony. The experimental results show that the improved algorithm reduces the path length by 6.4% and the variance of the optimal path length by 85.78%, which increases the consideration of environmental integrity, shortens the path length, reduces the number of iterations, and jumps out of the local optimum. In the case of increasing environmental complexity, the algorithm can effectively choose a better path and provide a theoretical basis for UAV route planning after introducing the adaptive heuristic function factor.
查看全文   查看/发表评论  下载PDF阅读器
关闭
今日访问: 4525 访问总量:4733258 当前在线[0]
版权所有:《河北科技大学学报》编辑部
地址:河北省石家庄市裕华东路70号,河北科技大学学报编辑部
电话:0311-81668291;81668292 传真:0311-81668293
技术支持:北京勤云科技发展有限公司