Hermitian least squares solutions of constrained $A_2XA_3^* = C_2$

WANG Fangyuan¹, LI Ying¹, XU Zhourui², CHA Xiuxiu¹

¹School of Mathematical Sciences, Liaocheng University, Liaocheng Shandong 252000, China; ²Department of Foundation Education, Technician College of Liaocheng City, Liaocheng Shandong 252000, China.

Abstract: Through study of the Hermitian least squares solutions of $A_2XA_3^* = C_2$, under the limits of $\min \|A_2XB -C_2\|_F$, we derive the equivalent condition about Hermitian least squares solutions of $A_2XA_3^* = C_2$, and the solution of matrix inequality $A_2XA_3^*A_2^{*} \succ 0$. From this, we solve the existence problem about the positive definite Hermitian least squares solutions of $A_2XB - C_2$.

Key words: matrix function; matrix equation; rank; inertia; least-squares solution

1 预备知识

本文分别以 $C^{m \times n}, C^n$ 表示所有 $m \times n$ 复矩阵、$m \times m$ 复 Hermitian 矩阵的集合。$A^\ast, r(A)$ 分别表示矩阵 A 的共轭转置与秩。I_m 表示 m 阶单位矩阵。(A, B) 是由 A, B 构成的矩块矩阵，对于 n 个阶数相同的 Hermitian 矩阵 A 与 B，如果 $A - B$ (半) 正定，则记为 $A \succ 0$. $I_n(\bullet)$ 表示矩阵 $C^{m \times n}$ 的单位矩阵，其中 $i_n(\bullet)$、$i_n(\bullet)$ 分别为 \bullet 的正、负及零特征值的个数。对于矩阵 $A \in C^{m \times n}$，称满足下列 4 个条件的矩阵 $G：1) AGA = A; 2) GAG = G; 3) (AG) = AG; 4) (GA) = GA$ 为 A 的 M-P数，记为 A^\ast. $F_A = I - A A^\ast, F_A = I - A A^\ast$ 分别为 A^\ast, A 的零空间上的正交投影，且秩满足 $r(F_A) = \ldots$.
引理1 设 \(S \) 为 \(C^{m \times \infty} \) 中矩阵构成的集合，\(H \) 是 \(C^{n \times \infty} \) 中矩阵构成的集合，则：
a) 当 \(m=n \) 时，\(S \) 中含有非奇异矩阵当且仅当 \(\max \{X \} = m \);
b) \(0 \in S \) 当且仅当 \(\min \{X \} = 0 \);
c) \(H \) 中含有 \(X := 0 \) 当且仅当 \(\max \{X \} = m \);
d) \(H \) 中含有 \(X := 0 \) 当且仅当 \(\min \{X \} = 0 \).

引理 2 设 \(A \in C^{m \times \infty} \), \(B \in C^{m \times \infty} \), \(C \in C^{m \times \infty} \), 则：
\[
\begin{align*}
& r(A, B) = r(A) + r(E, B) = r(B) + r(E, A), \\
& r(C) = r(AC) + r(CF) + r(C) + r(ACF), \\
& r(0) = r(B) + r(C) + r(ENAF),
\end{align*}
\]
由引理 2 可得到以下公式：
\[
\begin{align*}
& \left[\begin{array}{cc}
A & BF \\
E & C
\end{array} \right] = \left[\begin{array}{cc}
A & B \\
C & 0
\end{array} \right] \\
& \left[\begin{array}{cc}
D & 0 \\
0 & P
\end{array} \right].
\end{align*}
\]
引理 3 设 \(A \in C^{m \times \infty} \), \(B \in C^{m \times \infty} \), \(C \in C^{m \times \infty} \) 则有：
\[
\begin{align*}
r(A, B) = r(A) + r(A, B). \\
r(A) = r(AC) + r(C), \\
r(A) = r(C^*) + r(A^*).
\end{align*}
\]
引理 4 设 \(A \in C^{m \times \infty} \), \(B \in C^{m \times \infty} \), \(C \in C^{m \times \infty} \). 若 \(R(AQ) = R(A), R(AP) = R(A^*) \) 则：
\[
\begin{align*}
& r(AQ) = r(A), \\
& r(AC) = r(C).
\end{align*}
\]
引理 5 设 \(A \in C^{m \times \infty} \), \(B \in C^{m \times \infty} \), \(P \in C^{m \times \infty} \) 为非奇异矩阵，则：
\[
\begin{align*}
& i.: (PAP^*) = i.: (A), \\
& \lambda \geq 0, \\
& \lambda < 0.
\end{align*}
\]
引理 6 设 \(A, B, C, D, P \) 与 \(Q \) 使得矩阵表达式 \(D - C, A \in C \) 有定义，则有：
\[
\begin{align*}
& r(D - C, A \in C) = r(D - C, A \in C) = r(D - C, A \in C) = r(D - C, A \in C).
\end{align*}
\]
b) 设 \(A, B, C, D, P \) 与 \(Q \) 使得矩阵表达式 \(D - CP^* AQ^* B \) 有意义。则有：
\[
\begin{align*}
r(D) = CP^* AQ^* B = r(D) = CP^* AQ^* B = r(D) = CP^* AQ^* B.
\end{align*}
\]
c) 设 \(A \in C^{m \times \infty} \), \(B \in C^{m \times \infty} \), \(P \in C^{m \times \infty} \), \(D \in C^{n \times \infty} \) 则有：
\[
\begin{align*}
i.: (A) = i.: (A), \\
i.: (B) = i.: (B), \\
i.: (P) = i.: (P).
\end{align*}
\]
引理 7 设 \(A \in C^{m \times \infty} \), \(B \in C^{m \times \infty} \) 与 \(C \in C^{m \times \infty} \) 为非奇异矩阵，假设矩阵方程 \(A \in C^{m \times \infty} \) 有解，则下列各项等价。
a) 矩阵方程 $AXB = C$ 存在 Hermitian 解；

$$
\begin{align*}
R(C) & \supseteq R(A), R(C^*) \supseteq R(B^*) , \left[\begin{array}{ccc}
C & 0 & A \\
0 & C^* & B^* \\
B & A^* & 0 \\
\end{array} \right] & = 2r(A^*,B)
\end{align*}
$$

b) 矩阵方程 $AYB + C^* \bar{Y}A^* = C^*$ 有公共解 Y。

若方程 $AXB = C$ 存在 Hermitian 解，则其通解表达式为 $X = \frac{1}{2} (Y - Y^*)$，其中 Y 是 $AYB = C$ 与 $B^*YA^* = C^*$ 的公共解，或等价于 $X = \frac{1}{2} (Y_0 + Y_0^*) + E_0 U_1 + (E_0 U_1^*)^* + F_0 U_2 F_0 + E_0 U_2 E_0$，其中 Y_0 为 $AYB = C$ 与 $B^*YA^* = C^*$ 的一个公共解，$G = (A^*,B), U_1 \in C^{n \times n}, U_1 \in C_n$ 为 3 个任意矩阵。

引理 8[10] 设给定 $A \in C^{m \times n}, B \in C^n$，则矩阵方程 $AXA^* - B$ 存在 Hermitian 解当且仅当 $R(B) \subseteq R(A)$，或等价于 $AA^* = B$。在此条件下，该方程的通解可表示为如下形式：

$$
X = A^* B(A^*)^* + F_* V + V^* F_*
$$

其中 $V \in C^{m \times n}$ 为任意矩阵。

引理 9[11] 设 $P(X_1, X_2, X_3) = \Delta^r B_1 X_1 C_1, B_2 X_2 C_2 = B_3 X_3 C_3$ 为 Hermitian 矩阵函数，其中 $X_i \in C^{m \times n}, X_i \in C^n, i = 2,3$ 为变量，$A \subseteq C^n, C \subseteq C^{m \times n}, B \subseteq C^{m \times n}$ 为任意矩阵，假定 $R(C) \subseteq R(B^*), R(B) \subseteq R(B^*), R(B) \subseteq R(B^*)$，

$$
M = \left[\begin{array}{ccc}
A & C^* & B_1 \\
C_1 & 0 & 0 \\
0 & 0 & 0 \\
B_1^* & 0 & 0 \\
\end{array} \right], M_1 = \left[\begin{array}{ccc}
A & C^* & B_2 \\
C_1 & 0 & 0 \\
0 & 0 & 0 \\
B_2^* & 0 & 0 \\
\end{array} \right]
$$

则

$$
\max_{x, z, y} r[p(X_1, X_2, X_3)] = \min_{x, z, y} r(\Delta^r B_1 C_1, r(N)),
$$

$$
\min_{x, z, y} r[p(X_1, X_2, X_3)] = 2r(A, B_1) + 2r(\Delta^r B_1 C_1, r(N)) - r(N_1) - r(N_2) - 2r(M),
$$

$$
\max_{x, z, y} \min_{x, z, y} \left[p(X_1, X_2, X_3) \right] = \min_{x, z, y} \left(M_2 \right),
$$

$$
\min_{x, z, y} \left[p(X_1, X_2, X_3) \right] = r(\Delta^r B_1 C_1, r(N)) - r(x, z, y) - r(M),
$$

2 约束 Hermitian 最小二乘解

由文献[6]知 $A \in C^n, C \in C^n$ 的 Hermitian 最小二乘解的通解表达式为

$$
X = \frac{1}{2} (Y + Y^*) + E_0 U_1 + (E_0 U_1^*)^* + F_0 U_2 F_0 + E_0 U_2 E_0,
$$

其中 $A \subseteq C^{m \times n}, B \subseteq C^{m \times n}$ 与 $C \subseteq C^{m \times n}$，$G = (A^*, A, B^*_1), U_1 \subseteq C^{m \times n}$ 与 $U_2, U_2 \subseteq C_n$ 为任意矩阵，Y_0 为方程 $A^* A, Y^* B : A^* C, B^* A$ 和 $B^* Y^* A : A^* C, B^* A$ 的公共解。

$$
$$
式(2)是一个关于3个变量U_1, U_2, U_3的线性Hermitian矩阵函数，将其表示为

$$ A_1^* A_1 F_1 U_1 F_1 A_1^* A_1, \quad A_2^* A_2 F_2 U_2 F_2 A_2^* A_2, \quad A_3^* A_3 F_3 U_3 F_3 A_3^* A_3, \quad (C, D), \quad (G, H), \quad G, H \in M_n \otimes M_n, \quad K \subset G. \quad (3) $$

其中 $P = A_1^* A_1 A_2 - \frac{1}{2} A_1^* A_1 (Y_1 + Y_2) A_2 + A_2^* A_2$. 显然，

$$ R(G^*) \subseteq R(G_1), \quad R(G_2) \subseteq R(G_1), \quad R(G_2) \subseteq R(G_3), \quad R(G_2^*) \subseteq R(G_3). \quad (4) $$

对式(3)应用引理9可得，

定理1 给定 $A_1 \in C^{m \times n}, i, j, k, l \in C, \in C^{m \times k}, C_2 \in C$. 设矩阵方程 $A_1 X B_1 = C, \quad C \in C$ 存在Hermitian最小二乘解，记

$$ M = \begin{pmatrix}
A_1^* C_1 B_1^* & A_1^* A_1 & 0 & 0 & 0 \\
B_1 B_1^* & 0 & 0 & 0 & 0 & 0
\end{pmatrix}, \quad M_2 = \begin{pmatrix}
0 & 0 & -A_1^* C_2 A_2 & -A_1^* A_2 & 0 \\
0 & 0 & -A_1^* A_2 & 0 & -B_1 \\
0 & A_1 & 0 & -A_1 & 0
\end{pmatrix}. $$

$$ M_1 = \begin{pmatrix}
B_1 B_1^* & 0 & 0 & 0 & 0 & B_1 C_1^* A_1 & 0 \\
0 & A_1^* A_1 & 0 & 0 & 0 & 0 & A_1^* C_1 B_1^* \\
0 & 0 & A_1^* C_2 A_2 & A_1^* A_2 & 0 & 0 & 0 \\
0 & 0 & A_1^* A_2 & 0 & 0 & 0 & A_1^* A_2 \\
0 & A_1 & 0 & A_1 & 0 & 0 & 0 \\
B_1^* & 0 & 0 & 0 & 0 & B_1 & 0
\end{pmatrix}. $$

$$ N = \begin{pmatrix}
0 & B_1 C_1^* A_1 & 0 & B_1 B_1^* & 0 & 0 & 0 & 0 & 0 & 0 \\
A_1^* C_1 B_1^* & 0 & A_1^* A_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & A_1^* A_1 & 0 & 0 & 0 & 0 & 0 & 0 & A_1^* A_1 \\
B_1 B_1^* & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} B_1 \\
0 & 0 & 0 & 0 & A_1^* C_2 A_2 & A_1^* A_2 & A_1^* A_2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & A_1^* A_2 & 0 & 0 & A_1^* A_2 & 0 & 0 \\
0 & 0 & 0 & A_1 & 0 & 0 & A_1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & B_1 \\
0 & 0 & 0 & \frac{1}{2} B_1^* & 0 & 0 & 0 & B_1 & 0 & 0
\end{pmatrix}. $$

$$ (G, H), \quad G, H \in M_n \otimes M_n, \quad K \subset G. \quad (4) $$
\[
\begin{bmatrix}
B, C, A_1 & B, B_1 \\
A_1^* A_2 & 0 & 0 & 0 & 0 & A_1^* \\
& 0 & 0 & A_2^* C_2 A_2 & A_2^* A_2 & 0 \\
& 0 & 0 & -A_1^* A_2 & 0 & -A_1^* \\
& 0 & 0 & -A_1 & 0 & 0 \\
& 0 & B_1^* & 0 & 0 & -B_1^* & 0 \\
\end{bmatrix},
\]

\[
\begin{bmatrix}
A_1^* C, B_1^* & A_1^* A_2 \\
B_1 B_1^* & 0 & 0 & 0 & 0 & B_1 \\
& 0 & 0 & A_2^* C_2 A_2 & A_2^* A_2 & 0 \\
& 0 & 0 & A_1^* A_2 & 0 & 0 & B_1 \\
& 0 & A_1 & 0 & A_1 & 0 & 0 \\
& 0 & 0 & 0 & 0 & B_1^* & 0 \\
\end{bmatrix}
\]

则

\[
\min_{\substack{\mathbf{c}_1 \rightarrow \mathbf{A}_1, \mathbf{B}_1 \rightarrow \mathbf{A}_2, \\
\forall \mathbf{e} \in \mathbf{E}_p}} \max_{\mathbf{r} \in \mathbf{t}_d} r(A_1^* C_2 A_2 - A_1^* A_2 XA_2^* A_2)
\]

\[
\min_{\substack{\mathbf{c}_1 \rightarrow \mathbf{A}_1, \mathbf{B}_1 \rightarrow \mathbf{A}_2, \\
\forall \mathbf{e} \in \mathbf{E}_p}} \min\{r(A_1^* C_2 A_2, A_2^* A_2), r(M_1) \}
\]

\[
\min_{\substack{\mathbf{c}_1 \rightarrow \mathbf{A}_1, \mathbf{B}_1 \rightarrow \mathbf{A}_2, \\
\forall \mathbf{e} \in \mathbf{E}_p}} \min\{r(A_1^* C_2 A_2, A_2^* A_2), r(M_1) \}
\]

\[
\begin{align*}
&\max_{\mathbf{e} \in \mathbf{E}_p} i_+(A_1^* C_2 A_2, A_2^* A_2) + 2r(M_1) + r(M_2) \\
&\min_{\mathbf{e} \in \mathbf{E}_p} i_-(N) + r(N_1) + r(M_1) + r(B_1) + r(G)
\end{align*}
\]

\[
\max_{\mathbf{e} \in \mathbf{E}_p} i_+(A_1^* C_2 A_2, A_2^* A_2) = r(A_1^* C_2 A_2, A_2^* A_2) + r(M_1) - i_-(N) - r(M_1)
\]

证明 在式（4）的条件下，对式（3）应用引理9 得：

\[
\min_{\mathbf{e} \in \mathbf{E}_p} \max\{r(A_1^* C_2 A_2, A_2^* A_2 XA_2^* A_2) = \min\{r(P, G_i) \}
\]

\[
\min_{\mathbf{e} \in \mathbf{E}_p} \max\{r(A_1^* C_2 A_2, A_2^* A_2 XA_2^* A_2) = 2r(P, G_i) + 2r(P, G_i) + 2r(G_i, G_i) + 2r(G_i, G_i) + 2r(G_i, G_i) + 2r(G_i, G_i)
\]

\[
\begin{bmatrix}
P & G_i & G_i \\
G_i & 0 & 0 \\
& 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
P & G_i & G_i \\
G_i & 0 & 0 \\
& 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
P & G_i & G_i \\
G_i & 0 & 0 \\
& 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
P & G_i & G_i \\
G_i & 0 & 0 \\
& 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
P & G_i & G_i \\
G_i & 0 & 0 \\
& 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
P & G_i & G_i \\
G_i & 0 & 0 \\
& 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
P & G_i & G_i \\
G_i & 0 & 0 \\
& 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
P & G_i & G_i \\
G_i & 0 & 0 \\
& 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
P & G_i & G_i \\
G_i & 0 & 0 \\
& 0 & 0
\end{bmatrix}
\]
\[
\max_{\lambda \in \mathbb{R}} \left(A_1^\top A_2 - A_1^\top A_2 X A_1^\top A_2 \right) - \min_{\lambda \in \mathbb{R}} \left(A_1^\top A_2 - A_1^\top A_2 X A_1^\top A_2 \right) = \left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array} \right)
\]

利用矩阵的初等变换可得:

\[r(P, G_t) = \left(A_1^\top C_2 A_2 - x A_1^\top A_2 (Y_0 + Y_0^\top) A_2, A_1^\top A_2 \right) = r(A_1^\top C_2 A_2, A_1^\top A_2), \]

利用引理2—引理9计算得:

\[r(A_1) - r(B_1) - r(G) = \left(\begin{array}{cccc}
A_1^\top C_2 A_2 & A_1^\top A_2 & A_1^\top A_2 & 0 & 0 \\
0 & A_1 & 0 & 0 & 0 \\
0 & 0 & B_1 & -B_1^\top B_1 C_2 A_2 & 0 \\
\end{array} \right)
\]

利用矩阵的初等变换可得:

\[r(P, G_t) = \left(P G_t G_t \right) \rightarrow \left(\begin{array}{cccc}
P & G_t & G_t & G_t \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
\end{array} \right) = \left(\begin{array}{cccc}
P & G_t & G_t & G_t \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
\end{array} \right) \]

利用引理2—引理9计算得:

\[r(A_1) - r(B_1) - r(G) = \left(\begin{array}{cccc}
A_1^\top C_2 A_2 & A_1^\top A_2 & A_1^\top A_2 & 0 & 0 \\
0 & A_1 & 0 & 0 & 0 \\
0 & 0 & B_1 & -B_1^\top B_1 C_2 A_2 & 0 \\
\end{array} \right)
\]

利用矩阵的初等变换可得:

\[r(P, G_t) = \left(P G_t G_t \right) \rightarrow \left(\begin{array}{cccc}
P & G_t & G_t & G_t \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
\end{array} \right) = \left(\begin{array}{cccc}
P & G_t & G_t & G_t \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
\end{array} \right) \]

利用引理2—引理9计算得:

\[r(A_1) - r(B_1) - r(G) = \left(\begin{array}{cccc}
A_1^\top C_2 A_2 & A_1^\top A_2 & A_1^\top A_2 & 0 & 0 \\
0 & A_1 & 0 & 0 & 0 \\
0 & 0 & B_1 & -B_1^\top B_1 C_2 A_2 & 0 \\
\end{array} \right)
\]

利用引理2—引理9计算得:

\[r(P, G_t) = \left(P G_t G_t \right) \rightarrow \left(\begin{array}{cccc}
P & G_t & G_t & G_t \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
\end{array} \right) = \left(\begin{array}{cccc}
P & G_t & G_t & G_t \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
\end{array} \right) \]

利用引理2—引理9计算得:

\[r(A_1) - r(B_1) - r(G) = \left(\begin{array}{cccc}
A_1^\top C_2 A_2 & A_1^\top A_2 & A_1^\top A_2 & 0 & 0 \\
0 & A_1 & 0 & 0 & 0 \\
0 & 0 & B_1 & -B_1^\top B_1 C_2 A_2 & 0 \\
\end{array} \right)
\]

利用引理2—引理9计算得:

\[r(P, G_t) = \left(P G_t G_t \right) \rightarrow \left(\begin{array}{cccc}
P & G_t & G_t & G_t \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
\end{array} \right) = \left(\begin{array}{cccc}
P & G_t & G_t & G_t \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
\end{array} \right) \]

利用引理2—引理9计算得:

\[r(A_1) - r(B_1) - r(G) = \left(\begin{array}{cccc}
A_1^\top C_2 A_2 & A_1^\top A_2 & A_1^\top A_2 & 0 & 0 \\
0 & A_1 & 0 & 0 & 0 \\
0 & 0 & B_1 & -B_1^\top B_1 C_2 A_2 & 0 \\
\end{array} \right)
\]

利用引理2—引理9计算得:

\[r(P, G_t) = \left(P G_t G_t \right) \rightarrow \left(\begin{array}{cccc}
P & G_t & G_t & G_t \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
\end{array} \right) = \left(\begin{array}{cccc}
P & G_t & G_t & G_t \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
\end{array} \right) \]

利用引理2—引理9计算得:

\[r(A_1) - r(B_1) - r(G) = \left(\begin{array}{cccc}
A_1^\top C_2 A_2 & A_1^\top A_2 & A_1^\top A_2 & 0 & 0 \\
0 & A_1 & 0 & 0 & 0 \\
0 & 0 & B_1 & -B_1^\top B_1 C_2 A_2 & 0 \\
\end{array} \right)
\]

利用引理2—引理9计算得:

\[r(P, G_t) = \left(P G_t G_t \right) \rightarrow \left(\begin{array}{cccc}
P & G_t & G_t & G_t \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
\end{array} \right) = \left(\begin{array}{cccc}
P & G_t & G_t & G_t \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
G_t & 0 & 0 & 0 \\
\end{array} \right) \]

利用引理2—引理9计算得:

\[r(A_1) - r(B_1) - r(G) = \left(\begin{array}{cccc}
A_1^\top C_2 A_2 & A_1^\top A_2 & A_1^\top A_2 & 0 & 0 \\
0 & A_1 & 0 & 0 & 0 \\
0 & 0 & B_1 & -B_1^\top B_1 C_2 A_2 & 0 \\
\end{array} \right)
\]
\[r(A_1) \quad r(B_1) \quad r(M_1) \quad 2r(A_1) \quad 2r(B_1), \quad (12) \]

\[
\begin{bmatrix}
A_2^* A_2 & A_1^* A_1 & A_0^* A_0 \\
A_2^* A_2 & 0 & 0 \\
0 & A_1 & 0 \\
0 & 0 & B_1^* \\
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
I \\
I_{m} \\
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
I \\
I_{m} \\
\end{bmatrix}.
\]

\[r(A_1) - 2r(B_1) = r(N) - 2r(A_1) - 3r(B_1), \quad (13) \]

\[
\begin{bmatrix}
A_2^* C_2 A_2 & A_1^* A_1 & A_0^* A_0 \\
A_2^* A_2 & 0 & 0 \\
0 & A_1 & 0 \\
0 & 0 & B_1^* \\
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
I \\
I_{m} \\
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
I \\
I_{m} \\
\end{bmatrix}.
\]

\[r(A_1) = 2r(B_1) = r(N) = 2r(A_1) = 2r(B_1), \quad (14) \]

将式(9) 式(15)分别代入式(8)即得式(5) 式(7)。

利用以上结果与惯性指数的极值与引理1即可得如下结论。

定理2 假定 \(A_1, B_1, C_1, A_2, C_2 \) 如定理1所述，记 \(M_1, M_2, N_1, N_2, M, G, N \) 为定理1所定义的。则
a) 存在 \(A, B, C \) 的 Hermitian 最小二乘解 \(X \) 同时为 \(A, XA \), \(C \) 的最小二乘解当且仅当

\[2r(A_2^* C_2 A_2, A_1^* A_1) + 2r(M_1) + r(M_2) = r(N_1) + r(N_2) + r(M) + r(A_1) + r(B_1) + r(G). \]

b) 存在 \(A, B, C \) 的 Hermitian 最小二乘解 \(X \) 同时为 \(A, XA \), \(C \) 的最小二乘解当且仅当

\[i^+ (N) = 2r(A_1) + 2r(B_1) + m. \]

c) 存在 \(A, B, C \) 的 Hermitian 最小二乘解 \(X \) 同时为 \(A, XA \), \(C \) 的最小二乘解当且仅当

\[i^- (N) = 2r(A_1) + 2r(B_1) + m. \]

d) 存在 \(A, B, C \) 的 Hermitian 最小二乘解 \(X \) 同时为 \(A, XA \), \(C \) 的最小二乘解当且仅当

\[r(A_2^* C_2 A_2, A_1^* A_1) + r(M_1) = i^- (N) + r(M). \]
存在 A, XB, C 的 Hermitian 最小二乘解 X 使得 $A \geq A, XB \geq A, AX \geq A, C \geq A$ 当且仅当
$$r(A^* C, A, A^* A) + r(M_1) = i(N) + r(M).$$

f) 存在 A, XB, C 的 Hermitian 最小二乘解 X 使得 $A \geq A, C \geq A, A \geq A, XB \geq A, C \geq A, C \geq A$ 非奇异当且仅当

$$(A^* C, A, A^* A) \text{ 为满秩或 } r(M_1) = 2r(A) + 2r(B) + r(G) + m_5.$$

特别的，在定理 2 中，当 $A = I_n$ 时有如下推论。

推论 1 矩阵 A, B_1, C 如定理 1 所述，M_1, N_1 如下定义：

$$\begin{bmatrix} rB, B; & 0 & 0 & B, C; & A, 0 \\ 0 & A, A_1 & 0 & 0 & A, C, B; \\ 0 & A_1 & -A, A_1 A, A_1 A_1 & A, C, B, B; \\ B; & 0 & B; & 0 & 0 \end{bmatrix},$$

$$\begin{bmatrix} 0 & B, C; & A, 0 & B, B; & 0 & 0 & 0 & 0 & 0 \\ A, C, B; & 0 & A, A_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & A, A_1 & 0 & 0 & 0 & 0 & 0 & A, A_1 & 0 \\ B, B; & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1/2B, \\ 0 & 0 & 0 & 0 & I, 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & I, 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -A, B, \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & A, A, C, A; \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2B, & 0 & 0 & B; & 0 & 0 & 0 \\ \end{bmatrix}$$

则 $a) A, XB, C$ 存在满足 $X \leq C$ 的 Hermitian 最小二乘解当且仅当 $i(N_1) = 2r(A) + 2r(B) + m_1$；

b) A, XB, C 存在满足 $X \geq C$ 的 Hermitian 最小二乘解当且仅当 $i(N_1) = 2r(A) + 2r(B) + m_1$；

c) A, XB, C 存在满足 $X \leq C$ 的 Hermitian 最小二乘解当且仅当 $r(M_1) = i(N_1) + m_1$；

d) A, XB, C 存在满足 $X \geq C$ 的 Hermitian 最小二乘解当且仅当 $r(M_1) = i(N_1) - m_1$。

如果在定理 1 中有 $A = I_n, C = 0$，则可得到矩阵方程 A, XB, C 存在 (半) 正 (负) 定 Hermitian 最小二乘解的等价条件如下。

推论 2 矩阵 A, B_1, C 如定理 1 所述，M_1, N_1 如下定义：

$$\begin{bmatrix} rB, B; & 0 & 0 & B, C; & A, 0 \\ 0 & A, A_1 & 0 & 0 & A, C, B; \\ 0 & A_1 & -A, A_1 A, A_1 & A, C, B, B; \\ B; & 0 & B; & 0 & 0 \\ \end{bmatrix}$$

如果在定理 1 中有 $A = I_n, C = 0$，则可得到矩阵方程 A, XB, C 存在 (半) 正 (负) 定 Hermitian 最小二乘解的等价条件如下。
则：a）方程 $A XB = C$ 存在正定 Hermitian 最小二乘解且仅当 $i_1 | (N_i) = 2r(A_1) + 2r(B_1) + m_1$；
b）方程 $A_1 XB = C$ 存在正定 Hermitian 最小二乘解且仅当 $i_1 | (N_i) = 2r(A_1) + 2r(B_1) + m_1$；
c）方程 $A XB = C$ 存在半负定 Hermitian 最小二乘解且仅当 $r(M_i) \neq 2r(A_1) + 2r(B_1) + m_1$；
d）方程 $A XB = C$ 存在半正定 Hermitian 最小二乘解且仅当 $r(M_i) = 2r(A_1) + 2r(B_1) + m_1$。

参考文献/References: