基于改进的Canopy-k-means的大跨屋盖表面风荷载分区方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(51278314);河北省自然科学基金(E2019210031);中央引导地方科技发展资金项目(206Z5401G);北京交通大学“结构风工程与城市风环境北京市重点实验室”开放课题(2023-1)


Study on surface wind load zoning of long-span roof based on improved Canopy-k-means algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对k-means聚类算法在大跨屋盖结构表面风荷载分区计算中,聚类数k值随机选取容易导致结果不稳定和计算效率低等问题,提出改进的Canopy-k-means聚类算法。首先,引入Canopy算法并对其初始阈值和聚类中心的选取方式进行改进,减少初始值选取的盲目性,以提高风荷载分区结果的可靠性;其次,通过改进Canopy算法对风荷载数据集进行预处理,快速准确地确定聚类数k值;第三,将改进Canopy算法与k-means结合使用,实现最优分类数k值的精准识别,使得改进的Canopy-k-means聚类算法进行大跨屋盖结构表面风荷载分区时能够快速准确地得到分区结果;最后,以一大跨柱面屋盖干煤棚结构为例,基于风洞试验所得结构表面风荷载数据测试结果,采用所提改进的Canopy-k-means聚类算法对其表面风荷载进行分区计算。结果表明,采用改进的Canopy-k-means聚类算法,将0°、50°和90°风向角时大跨屋盖表面风荷载划分为了3个不同的分区,其对应的SD值分别为2.36、3.51和2.52,较传统k-means聚类算法所得对应值明显降低,类内紧凑性和类间分散性明显提升。所提改进Canopy-k-means聚类算法能够快速准确地得到最优分区结果,对大跨屋盖表面风荷载分区具有工程参考价值。

    Abstract:

    In order to solve the problem that random selection of clustering number k can easily lead to instability and low computational efficiency of k-means clustering algorithm in the zoning calculation of wind load on the surface of long-span roof structures, an improved Canopy-k-means clustering algorithm was proposed. Firstly, the Canopy algorithm was introduced, and the selection of its initial threshold and clustering center was improved to reduce the blindness of the initial value selection so as to improve the reliability of the results of wind load zoning. Secondly, the improved Canopy algorithm was used to preprocess the wind load dataset to determine the cluster number k quickly and accurately. Thirdly, the improved Canopy algorithm was combined with k-means to achieve the accurate identification of the optimal classification number k, so that the improved Canopy-k-means clustering algorithm can get the zoning results quickly and accurately when the wind load on the surface of long-span roof structure was divided. Finally, taking a long-span cylindrical roof dry coal shed structure as an example, based on the test results of the surface wind load data obtained from the wind tunnel test, the improved Canopy-k-means clustering algorithm was used to calculate the surface wind load. The results show that by using the improved Canopy-k-means clustering algorithm, the wind loads on the surface of long-span roofs at 0 °, 50 °and 90 °wind angles are divided into three different zones, and the corresponding SD values are 2.36,3.51 and 2.52,respectively, which are significantly lower than those obtained by the traditional k-means clustering algorithm, and the intra-class compactness and inter-class dispersion are obviously improved. Therefore, the improved Canopy-k-means clustering algorithm can obtain the optimal zoning results quickly and accurately, and has good engineering application value for wind load zoning on the surface of long-span roofs.

    参考文献
    相似文献
    引证文献
引用本文

李玉学,纪 君,董 阳.基于改进的Canopy-k-means的大跨屋盖表面风荷载分区方法[J].河北科技大学学报,2024,45(5):530-538

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-11
  • 最后修改日期:2024-01-27
  • 录用日期:
  • 在线发布日期: 2024-11-01
  • 出版日期:
文章二维码