异构网络表示学习方法综述
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国留学基金委地方合作项目(201808130283); 中国教育部人工智能协同育人项目(201801003011); 河北科技大学校立课题(82/1182108)


Review on heterogeneous network representation learning method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现实生活中存在的网络大多是包含多种类型节点和边的异构网络,比同构网络融合了更多信息且包含更丰富的语义信息。异构网络表示学习拥有强大的建模能力,可以有效解决异构网络的异质性,并将异构网络中丰富的结构和语义信息嵌入到低维节点表示中,以便于下游任务应用。通过对当前国内外异构网络表示学习方法进行归纳分析,综述了异构网络表示学习方法的研究现状,对比了各类别模型之间的特点,介绍了异构网络表示学习的相关应用,并对异构网络表示学习方法的发展趋势进行了总结与展望,提出今后可在以下方面进行深入探讨:1)避免预先定义元路径,应充分释放模型的自动学习能力;2)设计适用于动态和大规模网络的异构网络表示学习方法。

    Abstract:

    Most of the real-life networks are heterogeneous networks that contain multiple types of nodes and edges, and heterogeneous networks integrate more information and contain richer semantic information than homogeneous networks. Heterogeneous network representation learning to have powerful modeling capabilities, enables to solve the heterogeneity of heterogeneous networks effectively, and to embed the rich structure information and semantic information of heterogeneous networks into low-dimensional node representations to facilitate downstream task applications. Through sorting out and classifying the current heterogeneous network representation learning methods at home and abroad, reviewed the current research status of heterogeneous network representation learning methods, compared the characteristics of each category model , introduced the related applications of heterogeneous network representation learning, and summarized and prospected the development trend of heterogeneous network representation learning methods. It is proposed that in-depth discussion can be carried out in the following aspects in future: First, avoid predefined meta-paths and fully release the automatic learning capabilities of the model; Second, design heterogeneous network representation learning method suitable for dynamic and large-scale networks.

    参考文献
    相似文献
    引证文献
引用本文

王建霞,刘梦琳,许云峰,张 妍.异构网络表示学习方法综述[J].河北科技大学学报,2021,42(1):48-59

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-02
  • 最后修改日期:2020-10-27
  • 录用日期:
  • 在线发布日期: 2020-12-18
  • 出版日期: