基于混合神经网络与注意力机制的水下目标工频磁场扰动信号检测
DOI:
作者:
作者单位:

武汉工程大学电气学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Detection of Power Frequency Magnetic Field Disturbance Signal of Underwater Target Based on Hybrid Neural Network and Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水下目标的磁场近程化探测中磁信号衰减快、干扰强及扰动特征不明确等问题,提出了一种基于混合神经网络与注意力机制(att-CNN-GRU)的工频磁场水下目标时间序列扰动信号检测方法。该方法将CNN、GRU神经网络与Attention机制相结合拟合信号,并构建分类神经网络对目标信号进行分类识别,同时将该方法与未引入注意力机制的CNN-LSTM模型及单一的CNN和LSTM网络模型的预测及检测性能进行比较。实测结果表明,其中拟合效果相较于上述传统方法将误差分别减小36.24%、14.44%、4.878%,目标检测准确率达到83.3%。该方法能广泛应用于水下目标探测,作为辅助探测手段使用。

    Abstract:

    In order to solve the problems of fast attenuation, strong interference and ambiguous disturbance characteristics of magnetic signals in the magnetic field proximity detection of underwater targets, a time series disturbance signal detection method for underwater targets with industrial frequency magnetic field based on hybrid neural network and attention mechanism (att-CNN-GRU) is presented. This method combines CNN, GRU neural network and Attention mechanism to fit the signal, and constructs a classification neural network to classify and identify the target signal. The prediction and detection performance of this method is compared with that of CNN-LSTM model without attention mechanism and single CNN and LSTM network model. The measured results show that the fitting effect reduces the error by 36.24%, 14.44%, 4.878% and the target detection accuracy reaches 83.3% compared with the above traditional methods. This method can be widely used in underwater target detection as an auxiliary detection method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-06
  • 最后修改日期:2021-09-06
  • 录用日期:2022-04-26
  • 在线发布日期:
  • 出版日期:
文章二维码