基于人脸与体态特征的电力作业场景身份核验方法
DOI:
作者:
作者单位:

1.国网浙江省电力有限公司电力科学研究院;2.浙江大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Identity Verification Method Based on Face and Body Features in Power Operation Scenes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    出于安防与监管需求,工业作业场景中需要对人员进行身份核验,电力作业中因人员着装特殊且场景复杂,较难实现准确的身份识别。现有的识别方法大多是基于人脸识别技术,然而人脸识别方法易受服装遮挡、检测距离以及检测角度等因素影响。相比于人脸特征,步态特征是一种更为稳定可靠的生物特征,本论文提出了一种融合人脸识别和步态识别的多特征身份核验方法,可以有效提高单人场景中的身份识别准确率,同时在中科院的CASIA-A数据集上多视角情况的四折交叉验证集下实现了99.17%的分类准确率,数据集中包含的三个视角下的分类准确率分别为98.75%、100%、98.75%。

    Abstract:

    Due to security and oversight requirements, identity verification of personnel is needed in industrial operation scenes. However, in electric power operation, it is difficult to realize accurate identity verification because of special dress and the complex scene. Current verification methods are mostly based on face verification technology, which is susceptible to factors like clothing occlusion, detection distance and detection angles. Comparative to face features, body features are more stable and reliable. In this thesis, a multi-feature identity verification method, combining face and body features, is proposed. It effectively increases accuracy of identity verification in single person scenes, and achieves 99.17% classification accuracy under the four-folds cross-validation set of multi-view case on the CASIA-A dataset, where the classification accuracy of the three viewing angles are 98.75%, 100% and 98.75% respectively.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-13
  • 最后修改日期:2021-07-31
  • 录用日期:2023-09-20
  • 在线发布日期:
  • 出版日期:
文章二维码