In this paper, Cu-20Ni-19Fe-xAl (x=0wt%, 6wt%, 8wt%, 10wt%) alloys with different contents of Al were prepared by vacuum smelting. The effect of Al on the microstructure and high temperature oxidation performance of Cu-20Ni-19Fe alloy were studied. The high-temperature oxidation experiments were carried out at 850℃, 1atm oxygen partial pressure for 100h. The results show that the as-cast Cu-20Ni-19Fe alloy is composed of Cu-rich a phase and Ni-Fe rich dendritic phase. Al was dissolved in the Cu-20Ni-19Fe alloy matrix with 6wt% content of Al added. The needle-like or blocky NiAl phase was formed in the microstructure of Cu-20Ni-19Fe alloy with 8wt% and 10wt% Al added. The content of NiAl phase increased with the increasing addition of Al. The oxidation kinetics of Cu-20Ni-19Fe alloy under 850℃, 1atm oxygen partial pressure follow the straight line. After the addition of Al, the oxidation kinetic curve of Cu-20Ni-19Fe alloy follow an exponential law. The oxidation rate index of the Cu-20Ni-19Fe-xAl alloy was much smaller with the more content of Al. The high-temperature oxidation resistance of Cu-20Ni-19Fe alloy was greatly improved by the addition of Al. This can provide the Cu-20Ni-19Fe alloy as an alternative anode material for aluminum electrolysis.