一种稳定的弹性非均质问题间断伽辽金有限元法
DOI:
作者:
作者单位:

河海大学力学与材料学院

作者简介:

通讯作者:

中图分类号:

O343.7

基金项目:

中央高校基本科研业务费专项资金(2016B06414);国家自然科学基金(51679077)


A Stable Discontinuous Galerkin Finite Element Method for Heterogeneous Elasticity Problems
Author:
Affiliation:

College of Mechanics and Materials,Hohai University

Fund Project:

the Fundamental Research Funds for the Central Universities;The National Natural Science Foundation of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    弹性非均质问题存在众多材料界面,而经典间断伽辽金有限元法求解弹性力学界面问题存在由于稳定系数取值不当引起的数值不稳定问题,加权Nitsche间断伽辽金有限元法可以缓解这种不稳定问题,但是目前只应用于常量单元离散的情况。基于加权Nitsche间断伽辽金有限元法,推导了四结点四边形单元离散情况下的加权系数和稳定参数的计算公式,建立了权重与稳定参数间的定性依赖关系,使得高阶单元的使用成为可能。通过建立和求解广义特征值问题,对加权系数和稳定参数进行了数值计算。通过数值试验检验了方法的收敛性和稳定性,结果表明:在求解均质或非均质问题时,加权Nitsche间断伽辽金有限元法均表现出良好的稳定性,且计算结果具有较高的精度,从而为该方法进一步用于开裂等间断问题提供了良好基础。

    Abstract:

    The heterogeneous elasticity problems existed many material interfaces. While the classical discontinuous Galerkin finite element method faced the unstable numerical problem resulting from the inappropriate stability parameter for elasticity problem with interfaces. This problem could be released by the weighted Nitsche discontinuous Galerkin finite element method for constant elements. The weights and the stabilization parameters of the weighted Nitsche discontinuity Galerkin finite element method were derived with four-node quadrilateral elements discretization, and a qualitative dependence between the weights and the stabilization parameters was established. This made the use of high-order elements possible. The weights and the stabilization parameters were evaluated numerically by setting up and solving generalized eigenvalue problems. The convergence and stability of the proposed method were verified through numerical examples. The results show that the weighted Nitsche discontinuous Galerkin finite element method has good stability and high accuracy for both homogeneous and heterogeneous material problems. It provides a good foundation for further use in discontinuities such as cracking problems.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-09-06
  • 最后修改日期:2018-10-24
  • 录用日期:2023-09-08
  • 在线发布日期:
  • 出版日期:
文章二维码