有向网络下的CoDA社区发现算法评估
DOI:
作者:
作者单位:

河北科技大学信息科学与工程学院

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(71271076)。


Evaluation of the CoDA community detection algorithm based on directed network
Author:
Affiliation:

School of Information Science and Engineering, Hebei University of Science and Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    CoDA(Communities through Directed Affiliations)算法是一种基于概率模型的能识别二分结构的社区发现算法。为了验证该算法的社区划分效果,文章采用信息检索领域的评价标准F-measure标准,对有向网络下重叠社区和非重叠社区的CoDA社区发现算法进行评估。F-measure标准中F1-measure值的大小能反映CoDA算法社区划分效果的优劣。文中实验所用的数据集由LFR Benchmark工具生成,数据集中节点数最小为100,最大为20000,每增加100节点对CoDA算法社区划分效果评估一次。分析实验结果可以得出,当节点数小于1600时,CoDA算法的划分效果较好。当节点数大于1600时,随着节点个数增多CoDA算法社区划分效果逐渐变差。由此说明基于概率模型的CoDA算法适用于小规模社交网络社区的划分。

    Abstract:

    CoDA (Communities through Directed Affiliations) algorithm is a kind of community detection algorithm which based on probability model can successfully detects 2-mode communities.?The F-measure criterion, for information retrieval, was adapted to the evaluation of CoDA algorithm in directed networks with overlapping communities or non-overlapping communities . The value of F1-measure that in F-measure criterion can reflect whether CoDA algorithm performs well or not .The data sets used in the experiment was generated by the LFR Benchmark tool. The minimum number of nodes in data set was 100 and the maximum was 20000, and we did an evaluated experiment when every 100 nodes were added. The results show that CoDA algorithm performs well when the number of nodes is bellow 1600. However,once the number of nodes is above 1600, CoDA algorithm’s performance becomes worse with the increase of the number of nodes, that proves the CoDA algorithm which based on probability model is applicable to the community detection of small-scale networks .

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-09-23
  • 最后修改日期:2017-03-08
  • 录用日期:2023-08-21
  • 在线发布日期:
  • 出版日期:
文章二维码